

MARITIME UNIVERCITY OF SZCZECIN

ORGANISATIONAL UNIT: Faculty of Navigation

INSTRUCTION

Technical and operational parameters of the radar

Laboratory

Prepared by:	Kinga Drwięga	
Approved by:	Stefan Jankowski	
Effective from: 01.10.2020		

CONTENTS

- 1. PURPOSE AND SCOPE OF EXERCISE
- 2. DESCRIPTION OF THE RADARS
- 3. PERFORMING THE EXERCISE
- 4. REPORT PREPARATIONS
- 5. CONDITIONS OF FINAL EVALUATIONS
- 6. EDUCATIONAL OUTCOMES
- 7. LITERATURE

SUBJECT: Technical and operational parameters of the radar

1. Purpose and scope of exercise.

The aim of the exercise is knowledge fixation of technical and operational parameters of navigational radars by performing selected experiments illustrating the occurrence and role of these parameters.

2. Theoretical background.

- Graphic symbols, Polish and English names of control knobs: 17, 28, 31-37, 48-61.
- Long-range detection.
- Short distance detection.
- Range discrimination.
- Bearing discrimination.
- Radar range and bearing accuracy.

3. Description of the radar stations.

Radars of various types are available in the laboratory. Radar specifications are in section called 'DESCRIPTION OF THE RADAR STATIONS'.

4. The exercise.

Radar NUCLEUS 5000. Blind sector measurement.

- make the basic adjustment of the radar at the range of <u>3 Nm</u>;
- in order to improve discrimination use A/C Rain and A/C Sea;
- locate and measure radar blind sectors using an electronic bearing line (EBL);
- change the radar range to 24 Nm, long pulse;
- determine the relative bearing and distance to the furthest detected object;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar GEM LD-1804 R/6

The influence of the pulse length in determination of the bearing discrimination and range accuracy.

- make the basic adjustment of the radar at the range of <u>8 km</u>, short pulse;
- change the radar range to 0.8 km;
- provide an additional radar adjustment to see West side of Grodzka Island clearly;
- measure the distance to the North and South part of Grodzka Island by the use of VRM;
- change the radar range to 2 km, long pulse;
- observe the changes on radar image;
- change the radar range to 64km;
- determine the relative bearing and distance to the furthest detected object;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar SIMRAD 83/93. Determination of the maximum detection range and bearing accuracy.

- make the basic adjustment of the radar at the range of <u>6 Nm;</u>
- change the radar range to 48 Nm;
- if necessary, provide an additional radar adjustment taking into account the A/C Sea and A/C Rain in the aspect of the maximum detection range;
- determine the distance and relative bearing to the furthest detected objects;
- change the radar range to 0.5 Nm;
- if necessary, make an additional radar adjustment taking into account the A/C Sea and the discrimination;
- measure the angle between Bielawa Island (object no. 2) and the northern edge of Grodzka Island;
- change the radar range to 3 Nm;
- measure the angle between Kępa Jeżyka Island (object no. 14) and Sadlińskie Łąki Island (object no. 9), verify with measurements taken from the navigation chart;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar KODEN MDC 1860. Verification of long distance detection.

- make the basic adjustment of the radar at the range of <u>6 Nm;</u>
- change the radar range to 48 Nm;
- Determine the relative bearing and distance to the furthest detected object in the following sectors 000°-090°, 090°-180°, 180°-270°, 270°-360°;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar FURUNO FR 2115.

The influence of the A/C Rain and changes in the working range on range and bearing discrimination.

- make the basic adjustment of the radar at the range of <u>6 Nm;</u>
- change the radar range to 0.75 Nm;
- while adjusting the A/C Rain, observe the change in the appearance of echoes from Grodzka Island in aspect of range and bearing discriminations;
- change the radar range to 24 Nm;
- determine the range and bearing to the furthest detected object;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar FURUNO FAR 2815.

The influence of A/C Sea and range scale selection on range and bearing discrimination.

- make the basic adjustment of the radar at the range of <u>6 Nm;</u>
- change the radar range to 0.75 Nm;
- while adjusting the A/C Sea, observe the change in the appearance of echoes from Grodzka Island in terms of range and bearing discriminations;
- change the radar range to 12 Nm;
- check the maximum range of A/C Sea;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

Radar SIMRAD R3016

The influence of IR and A/C Sea on the radar image.

- turn on the STANDBY/BRILL button and set the brightness, using the rotary knob, to the ambient light;
- change to stand-by mode by pressing **STANDBY/ BRILL**;
- switch off the IR (MENU>ADVANCED>IR>OFF);
- make the basic adjustment of the radar at the range of 6 Nm;
- change the radar range to 48 Nm;
- use fixed range rings (MENU> PPI> Symbols> Range rings> ON) to determine the maximum working range of the A/C Sea;
- switch off the IR (MENU> ADVANCED> IR >OFF);
- switch the radar to the STAND-BY mode.

Radar Koden MDC- 7906 The influence of A/C Rain and A/C Sea on the radar image.

- make the basic adjustment of the radar at the range of <u>6 Nm;</u>
- change the radar range to 0.5 Nm;
- observe the influence of A/C Sea on radar image;
- change the radar range to 6 Nm;
- observe the influence of the A/C Rain on radar image;
- switch off the IR;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

***IN CASE OF FAILURE OF ONE OF THE MENTIONED ABOVE RADARS FOLLOW THE INSTRUCTIONS FOR 'RADAR JMA - 3254'.

***Radar JMA - 3254

The influence of A/C Sea and range scale selection on range and bearing discrimination.

- make the basic adjustment of the radar at the range of 6 Nm;
- change the radar range to 0.75 Nm;
- while making A/C Sea adjustments observe the changes of Grodzka Island in the aspect of range and bearing discrimination;
- change the radar range to 1.5 Nm;
- while making A/C Sea adjustments observe the changes of Grodzka Island in the aspect of range and bearing discrimination;
- turn all of the radar adjustment knobs to the zero position and switch the radar to the STAND-BY mode.

5. Report expectations.

The report should be prepared in accordance with the attached template and should contain obligatory answers to all the questions it contains.

The report should be prepared independently, hand-written and legible, and submitted to subsequent laboratory classes.

6. Educational outcomes.

III/3. Efekty kształcenia i szczególowe treści kształcenia

Efekty	Kierunkowe	
EKl	Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną związaną z reprezentowaną	K_W05; K_W17;
	dyscypliną inżynierską w zakresie radiolokacji.	K_W26
EK2	Potrafi dokonać analizy sposobu funkcjonowania i ocenić- w zakresie wynikającym	
	z reprezentowanej dyscypliny inżynierskiej - istniejące rozwiązania techniczne radarów,	K_U26
	interpretować obraz radarowy i procesy regulacji.	

Metody i kryteria	oceny					
EKI	Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną związaną z reprezentowaną dyscy- pliną inżynierską w zakresie radiolokacji.					
Metody oceny	Sprawdziany i prace ko	ntrolne w semestrze.				
Kryteria/ Ocena	2	3	3,5 - 4	4,5 - 5		
Kryterium 1 Ma uporządko- waną, podbudo- waną teoretycznie wiedzę ogólną związaną z repre- zentowaną dyscy- pliną inżynierską w zakresie radio- lokacji.	Nie posiada wiedzy w zakresie radiolokacji.	Posiada wiedzę w za- kresie radiolokacji na poziomie podstawo- wym.	Posiada wiedzę w za- kresie radiolokacji na poziomie zaawanso- wanym.	Posiada pełną wiedzę w zakresie radioloka- cji.		
EK2 Metody oceny	Potrafi dokonać analizy sposobu funkcjonowania i ocenić– w zakresie wynikającym z reprezentowanej dyscypliny inżynierskiej – istniejące rozwiązania techniczne radarów, interpreto- wać obraz radarowy i procesy regulacji.					
Kryteria/ Ocena	Zaliczenie ćwiczeń, laboratoriów/ symulatorów, sprawdziany i prace kontrolne w semestrze. 2 3 3 3.5 - 4 4.5 - 5					
Kryterium 1 Potrafi dokonać analizy sposobu funkcjonowania i ocenić- w zakre- sie wynikającym z reprezentowanej dyscypliny inży- nierskiej – istnie- jące rozwiązania techniczne rada- rów, interpreto- wać obraz rada- rowy i procesy regulacji.	Nie potrafi obsługi- wać urządzeń radaro- wych.	Potrafi obsługiwać urządzenia radarowe.	Potrafi obsługiwać urządzenia radarowe oraz zna jego możli- wości i ograniczenia.	Potrafi obsługiwać urządzenia radarowe, zna jego możliwości i ograniczenia oraz po- trafi właściwie zin- terpretować obraz ra- darowy.		

7. Conditions of final evaluations

SEMESTR III RAD	DIOLOKACJA	LABORATORYJNE	15 godz.
-----------------	------------	---------------	----------

WYKORZYSTANIE URZĄDZEŃ RADAROWYCH – SZKOLENIE NA POZIOMIE OPERACYJNYM

- 1. Wpływ elementów regulacyjnych na obraz radarowy.
- 2. Zorientowania i zobrazowania.
- Parametry techniczno-eksploatacyjne radaru.
- 4. Zniekształcenia i zakłócenia obrazu radarowego.
- Identyfikacja ech.
- Pomiary radarowe.
- Diagnostyka technicznej sprawności radaru.

Godziny	ECTS
15	
15	
2	
5	
5	
2	
44	2
32	1
22	1
	15 15 2 5 5 2 44 32

Zaliczenie przedmiotu

Wszystkie rodzaje zajęć z danego przedmiotu, odbywane w jednym semestrze, podlegają łącznemu zaliczeniu. Ocena z przedmiotu wynika z oceny poszczególnych zajęć, i oceny ewentualnego egzaminu i jest obliczana zgodnie z podanymi zasadami (średnia ważona): A/(E) 40%, C 30% L 30%; A/ (E) 40%, L 60%; A/(E) 40%, C 20%, L 20%, P 20%. Ocena niedostateczna z zaliczenia którejkolwiek formy przedmiotu w semestrze powoduje niezaliczenie przedmiotu. Zaliczenie przedmiotu w semestrze powoduje przyznanie studentowi liczby punktów ECTS przypisanej temu przedmiotowi.

8. Literature.

Basic literature

- 2. Bole A. G., Radar and ARPA Manual, Butterworth-Heinmann Elsevier, Great Britain 2007.
- 9. Juszkiewicz W., ARPA radar z automatycznym śledzeniem echa, WSM Szczecin, 1995.
- 10. Kabaciński J., Trojanowski J., Wykorzystanie radaru w warunkach ograniczonej widoczności, WSM, Szczecin 1995.
- 13. Łucznik M., Witkowski J., Morskie radary nawigacyjne, WM, Gdańsk 1983.
- 16. Wawruch R., ARPA zasada działania i wykorzystania, WSM, Gdynia 1998.

Additional literature

1. Kon W., Wykorzystanie radaru do zapobiegania zderzeniom, WM Gdańsk, 1983.

- 2. Międzynarodowy lotniczy i morski poradnik poszukiwania i ratowania (IAMSAR), TRADEMAR, Gdynia 2001.
- 3. Poinc W., Duda D., Ratownictwo morskie, Wyd. Morskie, Gdańsk 1978.
- 4. Puścian J., Podstawy ratownictwa na morzu, ODERRARUM, Szczecin 1993.